分式和方程教学反思

时间:2024-04-19 12:30:32
分式和方程教学反思

分式和方程教学反思

身为一名人民老师,我们需要很强的课堂教学能力,借助教学反思我们可以拓展自己的教学方式,教学反思要怎么写呢?下面是小编帮大家整理的分式和方程教学反思,仅供参考,希望能够帮助到大家。

分式和方程教学反思1

一.设计思路:

设计思路建立在我校目标教学的前提下,由学生自主导学,然后再由教师考查和点拨,但是由于种种原因,我最终决定给学生一个半开半闭的区间。这节课的关键在前面的这步过渡,究竟是给学生一个完全自由的空间还是说让学生在老师的引导下去完成,我先后作了多次试验和论证,认为“完全开放”符合设计思路,但是学生在有限的时间内难以完成教学任务,故我们最终决定和学生一起共同完成。

二.教学知识点:

1.在本课的教学过程中,掌握范围分式方程的解法是关键,所以由两个习题过渡后,我复习了一元一次方程的解法,然后引导学生尝试利用解一元一次方程方法的基础上一起探索探索解分式方程的解法。我先作一示范,学生练习格式,接着出现有增根的练习题,依然让学生解决,由于学生不会检验根的情况,所以,些时再详究增根产生的原因,怎样检验增根等问题。

2.在利用类比法解分式方程这一过程中,分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应渗透种化归思想的教学。

3.本节课的难点是对分式方程可能产生增根的原因,我为了让学生更深刻的理解就用了两个分式方程的解答过程进行对比,体现验根的重要性及必要性,

充分体现学生为主体,教师为主导的教学体系。

三.课堂效果:

在这节公开课上,学生状态不错,所有的学生都能积极思考,踊跃回答问题,在课堂练习和最后的课堂小测里,学生的作答规范正确,而且对于增根产生的原因及相关知识点的难题的突破学生掌握的不错。

整节课下来,基本能够达成教学目标,但是作为年轻教师,我在一些细节的处理上仍然需要改进。个别教学语言不够规范,而且利用新知识的学习过程,对旧知识的复习仍然不够,语速有点快,个别问题的引导可以更深层次,没有充分放手让学生突破难点,也是比较遗憾的地方,希望听课的老师给我多提意见,我会珍惜的。

分式和方程教学反思2

一、设计思路:

本节课作为分式方程的第一节课,是在学生掌握了一元一次方程的解法及分式四则混合运算的基础上展开的,既是对前一节内容的深化,又为以后的教学——“应用”打下了良好的基础,因而在教材中具有不可忽略的地位与作用。本节的教学重点是让学生清楚的认识到分式方程也是解决实际问题的工具之一,探索分式方程概念,明确分式方程与整式方程的区别和联系。

二、教学知识点:

在本课的教学过程中,我认为应从这样的几个方面入手:

1、在实际问题中充分理解题意,寻找等量关系,并依据等量关系列出方程。

2、分式方程和整式方程的区别:分清楚分式方程必须满足的两个条件,⑴方程式里必须有分式,⑵分母中含有未知数。这两个条件是判断一个方程是否为分式方程的充要条件。

3、分式方程和整式方程的联系:分式方程通过方程两边都乘以最简公分母,约去分母,就可以转化为整式方程来解,教学时应充分体现这种化归思想的教学。

三、总体反思

首先是学生如何顺利的找到题目中的等量关系,书本给出两个例子较难,按照书本的引入,一开始课堂就可能处以一种安静的思维,处于很难打开的状态,不能有效地激发学生学习兴趣与激情,所以才在学案中搭梯子降低难度,让学生体会到成功的喜悦,这样学生才会愿意继续探索与学习;实际问题的难度设置上是层层深入,问题也是分层次性,能够让不同层面的学生都有不同的体会与感受。

其次在教学过程中应提高教师自身的随机应变的能力和预设问题能力,课前充分备好学生。例如:以前学过整式方程,我们以前只是说一次方程之类的,没有系统的归类它是整式方程。如果不事先详细解释清楚整式方程这个词时,合作探究二进行的就不会很顺利。

最后,我们应让恰到好处的鼓励语和评价贯穿于教学过程中,只有这样,学生才能不断增强自信,在愉悦中探究新知,解决问题。

总而言之,教无定法,学无定法。我们应在教改的'道路上不断充实自我,完善自我。

分式和方程教学反思3

初三第一轮复习至关重要,在这一轮复习中我们教师如能精心策划每一节课(学习目标的确定、习题的分层设计、课堂中学生们的学习方式的选择……),就会让不同层次学生都能得以提升,从而提高数学平均成绩。所以,在复习《一元一次方程和分式方程的应用》这节课时,我首先仔细翻阅了七年级(上)和八年级(下)的数学书,然后从这两本书中选择了具有代表性的十二道题应用题留做了家庭作业,要求学生们认真写在作业本上,目的在于回忆各类题的相关公式和思维方式,从而把基础牢牢抓住。

通过课前组长作业的检查,我发现了很多问题,例如:行程问题单位不统一或设中速度无单位、利润问题弄不清各种价(售价、标价、定价、进价……)的含义、不认真审视题中的关键字眼等等。看到这些“意料中”的错误,我感觉我的前置性作业做到了“查缺”,那么课堂上如何“补漏”就成为了最大的关键。针对课前的检查,我确定了课堂上学生们的学习方式:先通过组内的“群学”解决共性问题,再通过“对学”进行“一帮一”,最后再通过几对“师友”间的相互点评进行全班性的交流和共识,我认为本节课完成了我在备课中设定的教学目标,同学们通过一系列的学习方式解决了“独学”中遇到的困惑。

但是本节课留给我更多是思考:如何通过“独学、对学、群学”等学习方式高效地完成初三的各阶段复习?每种方式进入初三又该如何改进和发展才能恰到好处地发挥作用呢?相信“方法总比困难多”,我会在今后的教学中不断吸取他人成功的经验,在摸索中前进。

分式和方程教学反思4

本节课分式方程的解法部分属于重点,难点为利用分式方程解实际问题。分式方程的解法是解决大多数数学问题的基础公具,应让学生们从思想上认识到它的重要性,解实际问题需正确找到等量关系,构建数学模型,把实际问题转化为数学计算问题,本节课学生对这条教学主线,理解较为清晰。

本节课我采用了启发讲授、合作探究、讲练相结合的教学方式。在课堂教学过程中努力贯彻“教师为主导、学生为主体、探究为主线、思维为核心”新课表理念。使学生充分地动口、动脑,参与教学全过程。在教学过程中,为了达到学习目标,强化重点内容并突破学习中的难点,在课堂教学过程中,根据教学目标和学生的具体情况,紧密联系实例,精心设计问题情境,使所有学生既能参与,又有探索的余地,全体学生在获得必要发展的前提下,不同的学生获得不同的体验。达到了课堂教学的有效性。在学法指导上,本着“授之以鱼,不如授之以渔”的原则,围绕本节课所学知识,激发学生积极思考,教会学生分析问题的方法,使学生既能在探索中获取知识,又能不断丰富数学活动的经验,学会探索,提高分析问题、解决问题的能力。

本节课体现了本人,努力培养具有较高数学素养的一代新人的教育观点,达到了预期的教学效果。

分式和方程教学反思5

本节课我主要采取“361”的课堂教学模式,让学生自习的基础上进上步加深对知识的掌握。这种学习模式符合课改要求,但是经过教学发现,以以往的教学中,学生在解分式方程时需要花费很长时间,学生在有限的时间内难以完成教学任务,但本节课,通过学生的课前的预习,节约的课堂上的时间。

教学上应多用类比的方法,与分数进行类比教学,使学生明确分式与分数、分式与整式等方面的区别与联系,体会分式的模型思想,进一步发展符号感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程转化为整式方程。解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。

解可化为一元一次方程的分式方程,也是以一元一次方程的解法为基础,只是需把分式方程化成整式方程,所以教学时应注意重新旧知识的联系与区别,注重渗透转化的思想,同时要适当复习一元一次方程的解法。至于解分式方程时产生增根的原因只让学生了解就可以了,重要的是应让学生掌握验根的方法。

要使学生掌握解分式方程的基本思路是将分式方程转化整式方程,具体的方法是“去分母”,即方程两边统称最简公分母。

在教学过程中,由于种种原因,存在着不少的不足。

1、回顾引入部分题目有点多,应该选择简单有代表性的一两个题目,循序渐进,符合人类认知规律。

2、教学重点强调力度不够。对学生理解消化能力过于相信,而分式方程的难点就是第一步,即将分式方程转化成整式方程。在这里,需要特别强化这个过程,应该对其进行专项训练或重点分析。例如,就学生的不同做法进行分析,让他们明白课本的这种方法最简单最方便。

3、时间掌握不太好。学生预习还不够充分,导致突发事件过多,以致总结过于匆忙。

分式和方程教学反思6

分式是八年级数学的第一章,经历了三周多的学习,学生已基本掌握了分式的有关知识(分式的概念、分式的基本性质、约分、通分、分式的运算、分式方程和能化为一元一次方程的分式方程的应用题等),并且获得了学习代数知识的常用方法,感受到代数学习的实际应用价值。下面是我在教学中的几点体会:

一、教学中的发现

本章可以让学生通过观察、类比、猜想、尝试等活动学习分式的运算法则,发展他们的合情推理能力,所以教学时重点应放在对法则的探索过程上。一定要让学生充分活动起来。在观察、类比、猜想、尝试当一系列思想活动中发现法则、理解法则、应用法则,同时还要关注学生对算理的理解,以培养学生的代数表达能力、运算能力和有理的思考问题能力。可是我在知识的传授上并没有注重探索、类比法则,而重在对分式四则运算法则的运用和分式方程的运用上,没有抓住教学的关键环节恰当的选择教学方法。今后要避免类似事情的发生。

二、教学中的重建

分式的运算(加、减、乘、除、乘方和混合运算)是代数恒等变形的基础之一,但是不能盲目的加大运算量与题目的难度,重点应放在对运算过程推理的理解上,把分式的基本性质做到灵活运用。

再则,对课本上关于分式的具体问题一定要重视,并关注学生在这些具体活动中的投入程度,看他们能否积极主动地参与,其次看学生在这些活动中的思维发展水平—-—能否独立思考?能否用数学语言表达自己的想法?能否反思自己的思维过程?进而发现新的问题,培养学生解决问题的能力!提高学生的学习兴趣!

《分式和方程教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式