高一数学教学计划

时间:2024-03-28 14:22:36
高一数学教学计划精选15篇

高一数学教学计划精选15篇

时间过得可真快,从来都不等人,我们又将接触新的知识,学习新的技能,积累新的经验,此时此刻我们需要开始制定一个计划。好的计划是什么样的呢?以下是小编帮大家整理的高一数学教学计划,欢迎阅读,希望大家能够喜欢。

高一数学教学计划1

本节课的教学内容,是指数函数的概念、性质及其简单应用。教学重点是指数函数的图像与性质。

I这是指数函数在本章的位置。

指数函数是学生在学习了函数的概念、图象与性质后,学习的第一个新的初等函数。它是一种新的函数模型,也是应用研究函数的一般方法研究函数的一次实践。指数函数的学习,一方面可以进一步深化对函数概念的理解,另一方面也为研究对数函数、幂函数、三角函数等初等函数打下基础。因此,本节课的学习起着承上启下的作用,也是学生体验数学思想与方法应用的过程。

指数函数模型在贷款利率的计算以及考古中年代的测算等方面有着广泛地应用,与我们的日常生活、生产和科学研究有着紧密的联系,因此,学习这部分知识还有着一定的现实意义。

Ⅱ.教学目标设置

1。学生能从具体实例中概括指数函数典型特征,并用数学符号表示,建构指数函数的概念。

2。学生通过自主探究,掌握指数函数的图象特征与性质,能够利用指数函数的性质比较两个幂的大小。

3。学生运用数形结合的思想,经历从特殊到一般、具体到抽象的研究过程,体验研究函数的一般方法。

4。在探究活动中,学生通过独立思考和合作交流,发展思维,养成良好思维习惯,提升自主学习能力。

Ⅲ.学生学情分析

授课班级学生为南京师大附中实验班学生。

1。学生已有认知基础

学生已经学习了函数的概念、图象与性质,对函数有了初步的认识。学生已经完成了指数取值范围的扩充,具备了进行指数运算的能力。学生已有研究一次函数、二次函数等初等函数的直接经验。学生数学基础与思维能力较好,初步养成了独立思考、合作交流、反思质疑等学习习惯。

2。达成目标所需要的认知基础

学生需要对研究的目标、方法和途径有初步的认识,需要具备较好的归纳、猜想和推理能力。

3。难点及突破策略

难点:1。 对研究函数的一般方法的认识。

2。 自主选择底数不当导致归纳所得结论片面。

突破策略:

1。教师引导学生先明确研究的内容与方法,从总体上认识研究的目标与手段。

2。组织汇报交流活动,展现思维过程,相互评价,相互启发,促进反思。

3。对猜想进行适当地证明或说明,合情推理与演绎推理相结合。

Ⅳ.教学策略设计

根据学生已有学习基础,为提升学生的学习能力,本节课的教学,采用自主学习方式。通过教师引领学生经历研究函数及其性质的过程,认识研究的目标与策略,在研究的过程中逐渐完善研究的方法与手段。

学生的自主学习,具体落实在三个环节:

(1)建构指数函数概念时,学生自主举例,归纳特征,并用符号表示,讨论底数的取值范围,完善概念。

(2)探究指数函数图象特征与性质时,学生自选底数,开展自主研究,并通过汇报交流相互提升。

(3)性质应用阶段,学生自主举例说明指数函数性质的应用。

研究函数的性质,可以从形和数两个方面展开。从图形直观和数量关系两个方面,经历从特殊到一般、具体到抽象的过程。借助具体的指数函数的图象,观察特征,发现函数性质,进而猜想、归纳一般指数函数的图象特征与性质,并适时应用函数解析式辅以必要的说明和证明。

Ⅴ.教学过程设计

1。创设情境建构概念

师:我们已经学习了函数的概念、图象与性质,大家都知道函数可以刻画两个变量之间的关系。你能用函数的观点分析下面的例子吗?

师:大家知道细胞分裂的规律吗?(出示情境问题)

[情境问题1]某细胞分裂时,由一个分裂成2个,2个分裂成4个,4个分裂成8个,……如果细胞分裂x次,相应的细胞个数为y,如何描述这两个变量的关系?

[情境问题2]某种放射性物质不断变化为其他物质,每经过一年,这种物质剩余的质量是原来的84%。如果经过x年,该物质剩余的质量为y,如何描述这两个变量的关系?

[师生活动]引导学生分析,找到两个变量之间的函数关系,并得到解析式y=2x和y=0。84x。

师:这样的函数你见过吗?是一次函数吗?二次函数?这样的函数有什么特点?你能再举几个例子吗?

〖问题1类似的函数,你能再举出一些例子吗?这些函数有什么共同特点?能否写成一般形式?

[设计意图]通过列举生活中指数函数的具体例子,感受指数函数与实际生活的联系。引导学生从具体实例中概括典型特征,初步形成指数函数的概念,并用数学符号表示。初步得到y=ax这个形式后,引导学生关注底数的取值范围,完成概念建构。指数范围扩充到实数后,关注x∈R时,y=ax是否始终有意义,因此规定a>0。a≠1并不是必须的,常函数在高等数学里是基本函数,也有重要的意义。为了使指数函数与对数函数能构成反函数,规定a≠1。此处不需对此解释,只要补充说“1的任何次方总是1,所以通常还规定a≠1”。

[师生活动]学生举例,教师引导学生观察,其共同特点是自变量在指数位置,从而初步建立函数模型y=ax。

[教学预设]学生能举出具体的例子——y=3x,y=0。5x…。如出现y=(-2)x最好,更便于引发对a的讨论,但一般不会出现。进而提出这类函数一般形式y=ax。

Ⅵ.教后反思回顾

一、对于指数函数概念的认识

指数函数是一种函数模型,其基本特征是自变量在指数位置。底数取值范围有规定,使得这一模型形式简单又不失本质。不必纠结于“y=22x是否为指数函数”,把重点放在概念的合理性的理解以及体会模型思想。

二、对于培养学生思维习惯的考虑

在学生自主探索的过程中,教师应注意培养学生良好的思维习惯。实际上,选择底数a的数据的大小和数量,需要对指数函数的性质有预判;从列表到作图的过程中,都可以感受到指数函数单调性等性质;观察并归纳性质,既需要特殊到一般的推理模式,也应养成有序进行观察和归纳的良好的思维习惯。对所归纳的指数函数的性质,应根据学生已有的知识水平或教学要求进行证明或合理的说明。学生不仅学到了数学知识,也初步体验了研究问题的基本方法。

三、关于设计定位的反思

本节课的教学设计,力图体现因材施教原则。不同的学情下,教师应采用不同的教学策略。如果学生基础相对薄弱,问题的提出可以分层次进行。另外,注意通过“你是怎么想的?”“你同意他的意见 ……此处隐藏16446个字……什么;培养先复习再做作业的习惯;独立思考的习惯;遇到困难查教材、查笔记的习惯等。

6、作业批改批改作业前,全组成员要校对答案,汇总解题方法。批改作业的基本要求是全批全改、及时准确。对错误较多的题目,认真分析原因,集中讲评,并督促他们改正;对学生书写、计算、作业整理方面存在的问题,要进行学法指导;认真书写评语,既要指出问题,又要多些鼓励

7、坐班:全组教师严格遵守学校的坐班纪律,保持办公室的安静,搞好办公室的卫生,责任到人,全组教师共同努力,创设良好的办公环境,提高干事的效率。

高一数学教学计划14

一、上学期教学回顾

高一共四个教学班,共计160余人。杨文国带高一(一)班,高一(二)班;张忠杰带高一(三)班和高一(四)班。其中各班期末八校联考的成绩分别为:50.6分,32.8分,27.2分,34.5分,总平36.9分。学期中途因张忠杰离开学校导致频繁更换老师,(三)班、(四)班的成绩因而受到影响。期末由王山任(三)班、(四)班的数学老师。

上学期工作在学生学习的落实环节上做得不太扎实,这将是本学期重点改进的地方。

二、本学期的措施及打算

1.一周学习早知道。明确目标更能确定努力的方向。为了让学生学习更有目的性,有效性和积极性,每周第一节课给出一周的教学进度,学习目标和过关要求。不仅老师要做到对所教内容清楚明了,也要让学生对所学内容做到每周学习目标清晰化。

2.落实每周测试过关制。周测内容与一周学习目标及一周的讲授内容紧密相连。未尽力而又没有过关的学生将按事先说明的措施给予处罚。以便让学生重视课堂学习,重视平时作业,重视一周的学习过程。做到让学生每周学习过程精细化。 3.根据学生学力状况进行分层次的培优补差。

三、教学进度安排

周次,学习内容

目标要求

1. 必修4 第一章三角函数:第1至3节

周期,角的推广及表示,弧度制及互化

2. 军训

3. 第4节:正弦函数

单位圆,正弦函数定义,象限符号,诱导公式,五点法画图像,图像及性质。

4. 第5节:余弦函数,第6节:正切函数

余弦函数正切函数定义,象限符号,诱导公式,图像及性质

5. 第7节:xAsiny的图像,第8节:同角的基本关系。

图像变换规律,同角三角函数的基本关系及其运用。章节复习,章节过关测试。

6. 第二章:平面向量:第1节至第2节

向量,有向线段,向量的长及相等、平行、共线、单位向量等概念,向量的加减法运算

7. 第3节至第5节

数乘向量,基本定理,向量运算的巩固训练,平面向量的坐标表示及运算。数量积的应用。

8. 第5节至第7节

数量积的应用及坐标表示,向量应用举例。习题课,章节复习,章节过关测试。

9. 第三章:三角恒等变换:第1节至第2节

两角和差的公式得推导,记忆及灵活运用,二倍角公式得来源及运用。期中复习。

10. 期中考试

期中复习,期中考试。

11. 第三章 第3节:三角函数的简单应用

试卷讲评改错,简单应用,三角恒等变换的综合习题课,练习,章节复习,必修4基本测试。

12. 五一长假

13. 必修3 第一章:统计。第1节至第5节

统计的程序,统计图,统计方案设计,普查与抽样,抽样方法,分层抽样与系统抽样,花统计图表及读统计图表,数字特征:平均数,中位数,众数,级差,方差的意义及计算分析,

14. 第6节至第9节

样本对总本的估计及相应的数字特征的计算分析,统计实践活动,变量的相关性及例题分析,最小二乘估计。章节复习,章节过关测试。

15. 第二章:算法初步:第1节至第3节

基本思想,基本结构及设计,排序问题。

16. 第4节:几种基本语句

条件语句,循环语句,复习三角函数的基本内容,章节复习,三角函数与算法初步过关测试。

17. 第三章:概率:第1节至第2节

频率,概率,古典概率,概率计算公式。

18. 第2节至第3节

建概率模型,互斥事件,习题课节复习,章节过关测试。

19. 期末复习

20. 期末复习,期末考试

高一数学教学计划15

教学目标:

知识与技能通过具体实例了解幂函数的图象和性质,并能进行简单的应用.

过程与方法能够类比研究一般函数、指数函数、对数函数的过程与方法,来研究幂函数的图象和性质.

情感、态度、价值观体会幂函数的变化规律及蕴含其中的对称性.

教学重点:

重点从五个具体幂函数中认识幂函数的一些性质.

难点画五个具体幂函数的图象并由图象概括其性质,体会图象的变化规律.

教学程序与环节设计:

材料一:幂函数定义及其图象.

一般地,形如 的函数称为幂函数,其中 为常数.

幂函数的定义来自于实践,它同指数函数、对数函数一样,也是基本初等函数,同样也是一种形式定义的函数,引导学生注意辨析.

下面我们举例学习这类函数的一些性质.

作出下列函数的图象:利用所学知识和方法尝试作出五个具体幂函数的图象,观察所图象,体会幂函数的变化规律.

定义域

值域

奇偶性

单调性

定点

师:引导学生应用画函数的性质画图象,如:定义域、奇偶性.

师生共同分析,强调画图象易犯的错误.

材料二:幂函数性质归纳.

(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);

(2) 时,幂函数的图象通过原点,并且在区间 上是增函数.特别地,当 时,幂函数的图象下凸;当 时,幂函数的图象上凸;

(3) 时,幂函数的图象在区间 上是减函数.在第一象限内,当 从右边趋向原点时,图象在 轴右方无限地逼近 轴正半轴,当 趋于 时,图象在 轴上方无限地逼近 轴正半轴.

例1、求下列函数的定义域;

例2、比较下列两个代数值的大小:

[例3]讨论函数 的定义域、奇偶性,作出它的图象,并根据图象说明函数的单调性.

练习

1.利用幂函数的性质,比较下列各题中两个幂的值的大小:

2.作出函数 的图象,根据图象讨论这个函数有哪些性质,并给出证明.

3.作出函数 和函数 的图象,求这两个函数的定义域和单调区间.

4.用图象法解方程:

1.如图所示,曲线是幂函数 在第一象限内的图象,已知 分别取 四个值,则相应图象依次为:.

2.在同一坐标系内,作出下列函数的图象,你能发现什么规律?

《高一数学教学计划精选15篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式